
Multi-Cloud Filesystem
and Data Orchestration
as a Service

TECHNICAL WHITEPAPER

TECHNICAL WHITEPAPER

 i

Table of Contents
1	 The Need for Multi-Cloud Data Orchestration.. 1

2	 Requirements for Multi-Cloud Data Orchestration.. 1

3	 Introducing Kmesh... 1

4	 How Kmesh Works.. 4

4.1	 The Two-Step Kmesh Provisioning Process...4

4.2	 Kmesh Service Instantiation...5

4.3	 Application Deployment..5

5	 Kmesh Technology... 6

5.1	 Global Distributed Data Service..6

5.2	 Core Technology Components..7

5.2.1	 Kmesh SaaS Orchestrator & Policy Engine..7

5.2.1.1	 The Kmesh Portal...7

5.2.1.2	 Kmesh Central Orchestrator...7

5.2.1.3	 SaaS capabilities and features...8

5.2.1.3.1	 High Availability..8
5.2.1.3.2	 Monitoring...8
5.2.1.3.3	 Multi-tenancy...8
5.2.1.3.4	 Multi-Cloud Uniform Access Policy...8

5.2.1.4	 SaaS Architecture...9

5.2.1.4.1	 Components...9
5.2.1.4.1.1 Pilot..9
5.2.1.4.1.2 Air Traffic Controller (ATC)..10
5.2.1.4.1.3 Cloud Connectors..10
5.2.1.4.1.4 Orchestrator...10

5.2.2	 Kmesh Data Node.. 10

5.2.2.1	 Data Node: Types & Sizes.. 12

5.2.2.2	 Data Mesh Filesystem.. 13

5.2.2.2.1	 Data Mesh Filesystem Features...15
5.2.2.2.1.1 POSIX-Compliant...15
5.2.2.2.1.2 Single, Loosely-Coupled Global Namespaces...15
5.2.2.2.1.3 Performance..16
5.2.2.2.1.4 Availability..17

TECHNICAL WHITEPAPER

 ii

5.2.2.2.1.5 Data Efficiency..17
5.2.2.2.1.6 Encryption..17
5.2.2.2.1.7 File Access Privileges...17
5.2.2.2.1.8 Scalability..17

5.2.2.3	 Rule-based Data Orchestration Engine... 17

5.2.2.3.1	 Kmesh Data Flow..17
5.2.2.3.2	 Application Data Access...18
5.2.2.3.3	 Flexible Data Mobility...18
5.2.2.3.4	 Data Flow Policies...18

5.2.2.3.4.1 In-Flight Compression..18
5.2.2.3.4.2 In-Flight Encryption...19
5.2.2.3.4.3 In-Flight Deduplication..19
5.2.2.3.4.4 Delete After Use Policy..19

5.2.2.3.5	 Kmesh filesystem to filesystem Data Synchronization..........19
5.2.2.3.5.1 Synchronous..21
5.2.2.3.5.2 Asynchronous...21
5.2.2.3.5.3 Multi-Master..21

5.2.2.3.6	 Any Data Source to Any Data Source Synchronization.........21
5.2.2.3.7	 Cross-Cloud Caching for Remote Data Access (Intelligent
	 Caching)..23

5.2.2.3.7.1 Cross-Cloud Caching with Synchronization for
Faster App Migration...23

5.2.2.3.8	 Ingest and Write to Existing File Storage
	 and Object Storage...24
5.2.2.3.9	 Reserse Synchronization from Virtual Copy..............................24
5.2.2.3.10	 Dataflow Snapshots...24
5.2.2.3.11	 Dataflow Virtual Copies..25

6	 Manageability of Kmesh..26

6.1	 REST API.. 26

6.2	 Kubernetes Integration.. 26

7	 Kmesh Onboarding..27

7.1	 Private Cloud... 27

7.2	 Public Cloud.. 27

TECHNICAL WHITEPAPER

 iii

Table of Figures

Figure 1: Kmesh Data Orchestration Service Capabilities & Portal...2

Figure 2: How Kmesh works..4

Figure 3: Globally Distributed Data Orchestration..6

Figure 4: Kmesh SaaS Multi-Tenancy Model..8

Figure 5: SaaS Architecture...9

Figure 6: Illustration of Kmesh deployment across 2 clouds.. 11

Figure 7: MDS: Metadata Server OSS: Object Storage Service... 12

Figure 8: Data tiering... 13

Figure 9: Kmesh Data Node types.. 13

Figure 10: Kmesh innovations built on top of Lustre.. 14

Figure 11: Geographically distributed, high-performance filesystem.. 15

Figure 12: Kmesh Data Flows.. 18

Figure 13: Kmesh flexible data mobility.. 19

Figure 14: Kmesh Filesystem to Filesystem Data Synchronization Architecture..................... 20

Figure 15: Any Data Source to Kmesh Filesystem Synchronization.. 22

Figure 16: Kmesh synchronization.. 23

Figure 17: Kmesh reverse synchronization from virtual copy.. 24

Figure 18: Space-efficient Dataflow Snapshots in Kmesh... 24

Figure 19: Virtual Dataflow Copies in Kmesh... 25

Figure 20: Dynamic provisioning of K8s PODs with Kmesh.. 26

TECHNICAL WHITEPAPER

 1

1	 The Need for Multi-Cloud Data Orchestration

Many apps and services cannot be deployed on public clouds, because the data they rely on is
not portable or accessible in real time. Typically, the data that supports cloud apps and services
resides in different locations, whether they are on-premise or cloud-based data sources.

Organizations need to manage and make available data from these multiple sources to
applications, a practice we refer to as ‘Data Orchestration.’ Only through robust data
orchestration can they support today’s modern workloads that drive competitive advantage –
cloud-based DevOps, IoT, machine learning, and high-performance computing.

There are two additional strategic benefits to robust data orchestration. First, it yields app
deployment flexibility. Second, it enables a holistic cloud strategy that combines private data
centers and public clouds to optimize capabilities and economies of scale.

2	 Requirements for Multi-Cloud Data Orchestration

Private and public clouds differ when it comes to architecture, scale, infrastructure availability,
storage options, data transfer capabilities, and numerous other operational factors. To make
numerous types of data available to apps across such a varied environment, IT organizations
require a new method of data management and orchestration that is both simple, flexible and
secured.

As such, the following are ‘Must Have’ features of a multi-cloud data orchestration solution:

1.	 A simple way of creating data synchronization and access across clouds and cloud
regions

2.	 Easy access to data, without requirements for additional transformation and copying

3.	 Common data formats across all clouds

4.	 A design that affords cloud-efficient data transfer; optimizes for cloud-based
computing, networking and storage; and provides capabilities to support cloud-
friendly use cases, such as a running DevOps, ML/Analytics/HPC on cloud.

5.	 Ability to handle link failures between clouds and cloud regions

6.	 Data transfer and access that are scalable and secure

3	 Introducing Kmesh

Kmesh Data orchestration service enables organizations to manage their data across cloud,
hybrid cloud, and multi-cloud deployments in real-time without the need for costly tools,
manual scripting and engineering effort.

TECHNICAL WHITEPAPER

 2

Kmesh transforms an enterprise’s centralized data into distributed ponds, which cloud exist
and operate over multiple clouds, countries, and edges as a single global namespace.

At its core, Kmesh is a data mobility and access service for connecting apps to the data that
drives them. Kmesh brings the data to the apps’ locations which enables organizations to
globalize, organize, share, and synchronize application data. Through this service, customers
can deploy robust and efficient data orchestration for a broad set of use cases associated with
Hybrid Cloud/Multi-Cloud, Edge Computing, and Data Localization/Data Sovereignty.

Kmesh delivers the four core benefits for managing applications and data in a Multi-Cloud
model:

Multi-Cloud Data Mobility
A simple data orchestration that enables data mobility across different clouds for the
purpose of cloud bursting, application migration and mobility.

•	 Data can be synchronized between Kmesh instances at different locations.
•	 Data can move between either enterprise data center or public clouds or between

cloud regions, e.g., AWS N.California and AWS Ohio or between public clouds, e.g.,
AWS Oregon and Azure Germany North.

Figure 1: Kmesh Data Orchestration Service Capabilities & Portal

TECHNICAL WHITEPAPER

 3

•	 Data is directly synchronized from Kmesh to any application that is requesting data —
with no intermediate “data staging”1 along the way.

•	 Efficient and secured data synchronization2 capabilities include efficient change
tracking, in-flight compression, in-flight deduplication and in-flight encryption.

File as a Service
POSIX-Compliant data access across different clouds to standardize on data access.

•	 Access to data occurs via a POSIX filesystem that is built on top Lustre3, that is available
in ‘File-as-a-service’. The remote data is presented as though it is local to the application.

•	 No need to change your applications when moved from cloud to cloud to fit to the data
semantics of each cloud

•	 Filesystem performance is tuned — pick the right cloud instances, storage and
filesystem-level parameters — based on the policies and requirement as specified by
the user.

•	 Kmesh supports a variety of application deployment models such as bare-metal,
virtualized, cloud instantiated, and containerized.

Multi-Cloud Data Management
Enterprise data management capabilities to manage data from all the clouds globally.

•	 Provides key data protection capabilities like Multi-Cloud Snapshots, unified file access
management, secure data access and control & audit logs across multiple clouds and
regions, including automated security & compliance

•	 A Multi-Cloud data namespace to bring visibility to entire data sources/targets across
om-premises and public clouds.

•	 The entire solution is highly available both from control and data plane.

Simple Provisioning, Management and Integration
A multi-tenant SaaS provides secured enterprise portal for holistic management of all the
data workflows.

•	 Build end-to-end data workflows for hybrid cloud app deployment, cloud-bursting and
other use cases.

•	 Provision easily without the need to understand the filesystem technology.

•	 Perform service provisioning using the Kmesh CSI4 plugin for Kubernetes managed-
container deployments.

•	 Using a REST API, integrate Kmesh into existing enterprise-wide infrastructure,
application and data management as well as orchestration systems.

1 - An inefficient practice to copy data, including filesystem/file data, temporarily into object storage and ingest it into cloud instances/
 filesystems.
2 - Multiple patent-pending innovations in this area
3 - http://lustre.org : Most popular HPC filesystem used in majority of top supercomputers in the world.
4 - https://kubernetes-csi.github.io/docs/

TECHNICAL WHITEPAPER

 4

4	 How Kmesh Works

Kmesh is a SaaS platform which users access via the Kmesh portal (portal.kmesh.io). Users are
guided by simple and intuitive steps to manage the entire multi-cloud workflow for application
data, regardless of the volume or complexity of workflows.

Complex workflows are greatly simplified in Kmesh: for example, user wants an application
running on AWS to pull data from an on-premise database, consume the data into the app on
AWS, and write results to Azure cloud. Modeling this workflow in Kmesh is just a matter of
creating a Kmesh Dataflow between the on-premises and cloud region through a few clicks.

Figure 2 illustrates the provisioning and orchestration of the Kmesh service.

4.1	 The Two-Step Kmesh Provisioning Process
Provisioning data in Kmesh involves just two steps in the Kmesh portal (portal.kmesh.io),
regardless of the single cloud, hybrid cloud, or multi-cloud application scenario a user is
deploying.

Note: Prior to Kmesh provisioning, users will need to follow onboarding steps. Please refer to
section 7 of this paper, entitled “Kmesh Onboarding.”

Figure 2: How Kmesh works

TECHNICAL WHITEPAPER

 5

Step 1: User creates a Kmesh Instance in each of the clouds involved in a use case: 	

»» User creates Kmesh service instances using Kmesh Data Nodes within each cloud or
cloud region that requires data access and synchronization (e.g. VMware private cloud,
AWS West region, AWS East region, etc.).

»» User configures cloud credentials required by Kmesh to instantiate Kmesh nodes on
each of the clouds.

Step 2: User configures data workflows for one or more use cases:

»» Using one or more Kmesh Data Flows, user configures the data access and
synchronization policies which are dictated by an application deployment and its
associated availability requirements

4.2	 Kmesh Service Instantiation
Based on the provisioning inputs, Kmesh orchestrator automatically performs the following
functions:

1.	 Instantiates required Kmesh Data Nodes within on-premises and cloud regions (at all
involved clouds/cloud regions). Instances contain both the data orchestration engine
for data synchronization and the filesystem for data access.

2.	 Creates the connectivity to existing data sources across all infrastructure.

3.	 Ingests the required data (as metadata references, not actual data) from the data
sources.

4.	 Sets up all the connections for real-time data synchronization between all data sources
and destinations (apps and services).

5.	 Creates access points (mount points) in each of the required clouds.

4.3	 Application Deployment
At this point, all necessary plumbing is done and the service is ready to use.

1.	 User deploys application(s) on Kmesh within relevant clouds using the access point.

2.	 At this point, application is able to access and synchronize the data per the defined use
case.

TECHNICAL WHITEPAPER

 6

5	 Kmesh Technology

Fortune 2000 enterprises are starting to look at Multi-Cloud architectures for many reasons,
including proximity to customers, data sensitivity, data localization, and cost efficiency. To
meet the application demands for data in multi-cloud environments, Kmesh has developed a
globally distributed data service that is purpose-built to make data accessible to applications
across multiple clouds. No longer limited by data concerns, enterprises can leverage the Kmesh
technology to deploy apps anywhere and to do more in the cloud.

While multi-cloud data synchronization and access capabilities form the core of the Kmesh
technology, the Kmesh solution addresses numerous other important aspects of multi-cloud
data management and synchronization. These include, but are not limited to, infrastructure
variations, cloud infrastructure costs, cloud availability models (I.e. availability zones and
regions), and inter-cloud latency. This ensures consistent service behavior based on
configurations established by the user.

5.1	 Globally Distributed Data Service
The diagram (left) depicts the Kmesh
globally-distributed data service
as it operates in a multi-cloud
environment. This is the foundation
of the entire Kmesh service. The
Kmesh technology establishes a
loosely-coupled, global namespace
and performs policy-driven data
orchestration based on the policies
applied to that namespace. A notable
differentiator from traditional data
services is that one portion of the
Kmesh data service at each cloud/
region can decouple from the global
data service, yet at the same time,
continue to perform application IO
operations on selected parts of the
namespace.

This decoupling is the basis for describing the architecture as a “loosely-coupled, global
namespace.” Referencing Figure 3 (above), the data service in Cloud Provider #1 (a regional
instance) can separate from the On-Prem and Cloud Provider #2 regions (both regional
instances) and continue to provide select data services. One advantage to such a design is

Figure 3: Globally Distributed Data Orchestration

TECHNICAL WHITEPAPER

 7

that specific applications can continue operating during network connection failures between
regions. Policy-driven data orchestration can synchronize and strategically locate data or
data copies in a way that minimizes the impact of weaknesses in multi-region/multi-cloud
topologies and to take advantage of lower-latency local IO.

Finally, the cloud-agnostic nature of the Kmesh technology means that all Kmesh distributed
data services operate the same way, even if the architecture involves multiple different cloud
vendors, such as AWS, Azure, GCP and Alibaba. This means a single Kmesh data service can
span multiple clouds as well as multiple physical regions of the world.

5.2	 Core Technology Components
Kmesh’s globally distributed data service is made up of two key elements:

1.	 Kmesh Orchestrator with Policy Engine SaaS. The centralized, multi-tenant SaaS
engine and portal help customers to provision, deploy, manage and monitor the
Kmesh service.

2.	 Cloud-specific Data Nodes. Deployed on customer’s infrastructure within various
clouds /cloud regions, nodes can be deployed on VMware, bare metal or openstack-
based, on-premises clouds and public clouds like AWS, Azure and GCP.

5.2.1	Kmesh SaaS Orchestrator & Policy Engine
Kmesh Orchestrator and Policy Engine is the core of the Kmesh service. It runs on Kmesh
infrastructure and is made up of two major components: the Kmesh Portal and the Kmesh
Central Orchestrator.

5.2.1.1	 The Kmesh Portal
Users leverage the Kmesh portal to establish data orchestration policies as well as create,
configure and manage Kmesh service. The Kmesh Portal allows for simple data orchestration
policies that can cater to a wide variety of use cases.

The portal displays the status of the service, from end to end, so that users can continuously
monitor their multi-cloud data infrastructure. As requirements change, users can easily modify
policies in Kmesh to optimize data usage, minimize costs and comply with evolving enterprise
requirements.

5.2.1.2	 Kmesh Central Orchestrator
Taking cues from user policies established via the Kmesh Portal, the Central Orchestrator
references configurations and automatically installs the necessary data services components
on the right infrastructure elements. Installation of data components is done in a way that
ensures their high availability.

TECHNICAL WHITEPAPER

 8

5.2.1.3	 SaaS capabilities and features
5.2.1.3.1	 High Availability
Kmesh SaaS stores all configurations and status in a highly available fashion. The configuration
and status are replicated across cloud availability zones (AZs) and regions to ensure AZ and
region failures do not interrupt service availability.

5.2.1.3.2	 Monitoring
Kmesh SaaS pro-actively monitors the state of Kmesh components across different clouds
and warns users when they are running low on provisioned storage capacity. Kmesh
proactively monitors several different parameters to keep users aware of Kmesh service and
the infrastructure. For example, a ‘No Activity’ alert is sent to users if the service is being used
by any application but just consuming infrastructure.

5.2.1.3.3	 Multi-tenancy
Kmesh is purpose-built to enable multi-tenancy. Isolations are built for provisioning/
management, dashboards, reporting and billing using the model shown in Figure 4 (below).

5.2.1.3.4	 Multi-Cloud Uniform File Access Policy
Kmesh provides capabilities to enforce uniform file access policy across multiple clouds.

1.	 Enforcement of identity and access control:

a.	 Integration with existing identity and access management (IAM) systems

b.	 Integration with cloud-based IAM (AWS & Azure)

c.	 Audit Logs from native logging facilities, such as AWS CloudTrail/CloudWatch

Figure 4: Kmesh SaaS Multi-Tenancy Model

TECHNICAL WHITEPAPER

 9

5.2.1.4	 SaaS Architecture
Customer experience and security drive the architecture of the SaaS platform. The architecture
is built around simplicity and scalability. The Kmesh SaaS needs a set of VMs/instances on
each cloud per the policy defined by the admin.

Here are interesting aspects of this architecture:

•	 All of the provisioning and orchestration is automated for public clouds and VMware
without requiring action from the customer, except with cases involving unsupported
clouds/infrastructure or bare-metal infrastructure.

•	 No public IP address is required for managing the Kmesh software on the customer’s
environment.

•	 No special network requirements

•	 No need for opening of non-standard ports (firewall holes) on customer infrastructure.

•	 Most of Kmesh SaaS intelligence is contained within the Kmesh SaaS component

5.2.1.4.1	 Components

5.2.1.4.1.1		 Pilot
Small Kmesh agent that runs each of the VMs/instances

•	 Communicates with Air Traffic Control (ATC) over HTTPS

•	 ATC asks the pilot questions and instructs the pilot to do things:

»» What kernel is running?
»» Download an rpm located at X and install it.
»» Run this lfs command.
»» Send vsphere api call to create a VM.

Figure 5: SaaS Architecture

TECHNICAL WHITEPAPER

 10

5.2.1.4.1.2		 Air Traffic Controller (ATC)
Instructs Pilots to perform specialized tasks.

•	 Runs on our infrastructure at a stable URL (https://atc.kmesh.io).
•	 Accepts incoming connections from pilots and validates pilot credentials.
•	 Listens on RabbitMQ message queue for any commands from Orchestrators.
•	 Pushes responses from pilots to RabbitMQ messaging queue.

5.2.1.4.1.3		 Cloud Connectors
Cloud-Specific connectors that use cloud API to perform resource management (VM creation,
bring down, etc.):

•	 For example, AWS connector talks to AWS & Rabbit, Azure-connector talks to Azure &
Rabbit.

•	 Cloud connectors take actions and respond to inquiries:

»» Create a VM
»» List VPCs in each region

5.2.1.4.1.4		 Orchestrator
Orchestrator is the heart of the SaaS. It is a glue between the user (portal or Rest API) and
Kmesh SaaS.

•	 Translates the user policies and configuration into actionable tasks for ATC/Pilot and other
components.

•	 Carries out all workflows associated with any user-driven changes or pro-active actions
by SaaS.

Note: The portal or any orchestrator components DO NOT have access to customer data since
Kmesh SaaS does not store any customer data. It only maintains configuration, stats and
statistics information for the Kmesh service.

5.2.2	Kmesh Data Node
Kmesh Data Node is the Kmesh software agent automatically deployed on customer
infrastructure. It stores the data and carries out the data services in conjunction with the
Kmesh SaaS. Users can create more than one node per cloud. A single instance of Kmesh
Data Node can consist of one or both of these functionalities.

1.	 Rule-based Data Orchestration Engine: An engine for synchronizing the data across
clouds, cloud regions and edges based on user-defined rules.

2.	 Data Mesh Filesystem: A POSIX filesystem that provides simple access to the data
synchronized.

TECHNICAL WHITEPAPER

 11

Figure 6 below illustrates how the data node — consisting of filesystem and orchestration
engine — is deployed in a two-cloud scenario.

1.	 User configures policies on Kmesh SaaS/portal

2.	 Following are examples of policies and data synchronization rules for this specific two-
cloud setup:

a. 	 App1 in Cloud A is consuming data from Node A.
b.	 Synchronize data from Cloud A and Cloud B in real-time.
c.	 Optionally, ingest existing data from NFS in Cloud A onc or at regular intervals.
d.	 App2 consumes the data synchronized on Cloud B and creates new data on Cloud B.
e.	 This new data will need to be synchronized back to Cloud A.

3.	 The synchronization rules are defined using Kmesh Data Flows.

4.	 Kmesh SaaS deploys the Kmesh node(s) on each cloud/cloud region based on the
configuration details, such as number of nodes, Data Node Types, source and destination
clouds/regions & data orchestration policies.

5.	 Data Nodes are deployed as cloud VMs or instances. Kmesh SaaS picks the right cloud
VM/instance based on user policy and requirements.

6.	 Policies are converted to rules and configuration information, and relevant data is pushed
to corresponding Kmesh Nodes.

7.	 The rules and configuration information at the Data Nodes is used to program and configure
the Data Orchestration engine & Data Mesh filesystem, with specific instructions for how
to treat existing and new data in each Kmesh Node.

8.	 Data synchronization rules are carried out by Kmesh’s orchestration engine and patented
data synchronization functionality.

Figure 6: Illustration of Kmesh deployment across 2 clouds

TECHNICAL WHITEPAPER

 12

5.2.2.1	 Data Node: Types & Sizes
A Kmesh Node can support multiple applications and simultaneous data synchronizations
across clouds. Alternatively, users can create multiple nodes to manage different applications
or data synchronizations.

Additionally, the Data node provides the following capabilities:

1.	 Node Types

»» Users can create different types and sizes of nodes depending on the application
requirements (storage capacity, performance, etc.) and cost of running the nodes on
clouds.

2.	 Scale-out Architecture

»» A Data Node is built on a scale-out model. A node has the smallest configuration (Figure
7: Kmesh Data Node Types) for each node type. Smallest configuration specifies the
capacity, performance and cost parameters for each Data Node type.

»» A node can be manually scaled up and down based on the node’s capacity and
performance utilization. Metadata performance or data performance can be scaled up
together or independently based on application requirements.

3.	 Auto-scaling:

»» Optionally, a Data Node can be auto-scaled based on certain criteria. If the capacity or
performance is 75% utilized, scale up by one smallest configuration.

4.	 At-rest compression, encryption & deduplication:

»» The node supports at-rest compression, encryption and deduplication.

5.	 HA and Non-HA mode:

»» HA adds additional underlying VM/instance availability to a node. If an instance/VM
were to fail, the node can still serve IOs to an application. By default, the nodes are in
non-HA mode. Nodes can be configured in HA node if required.

Figure 7: MDS: Metadata Server OSS: Object Storage Service.

TECHNICAL WHITEPAPER

 13

6.	 Data Tiering:

»» Data tiering reduces total storage cost by
using cheaper storage while optimizing
performance.

»» Tiering the Node data to cheaper tier
S3 or Glacier (AWS) and equivalent,
cheaper storage.

»» The non-hot data is automatically moved
to the cheaper tier.

»» When the data is needed by the
application, the data is read from the
cheaper tier into fast tier.

»» The data movement is controlled by
“Tiering percentage” which is set by the
user. This is the portion of the capacity
that will come from the cheaper tier.

Figure 9 shows different Node types and relevant information presented to users during the
provisioning process. This way, users can select the right node type. It also helps to create the
right size of the node using the capacity increments and performance details while obtaining
the most cost-optimized selection. Capacity increments define the smallest unit of the scale-
out architecture.

5.2.2.2	 Data Mesh Filesystem
Kmesh Data Mesh Filesystem (DMFS) is a geographically distributed, POSIX-compliant
filesystem capable of supporting a wide spectrum of applications with varying requirements

Figure 9: Kmesh Data Node types

Figure 8: Data tiering

TECHNICAL WHITEPAPER

 14

for performance, availability and cost-efficiency. DMFS spans multiple clouds as a single
namespace.

The core filesystem technology is built on top of Lustre, the most popular high-performance
computing (HPC) filesystem. Following are key indicators of Lustre’s importance to HPC which
led Kmesh to develop DMFS using Lustre.

1.	 3 of the top 5 supercomputers in the world use Lustre5

2.	 60% of the top 100 supercomputers use Lustre6

3.	 Lustre has proven, industry-leading scale and performance

4.	 Top filesystem in IO 500 Node challenge7 — 6 of the top 14 positions

5.	 Many US National Laboratories, universities, and enterprises have deployed Lustre in a
highly scalable manner.

6.	 For example, Oak Ridge National Laboratories’ supercomputer, Spider, runs Lustre with
over 25,000 clients, over 10PB of storage, and total IO throughput of 240 GB/sec.8

Using Lustre, Kmesh has developed many patent-pending innovations, as show in Figure 10
(below).

Figure 10: Kmesh innovations built on top of Lustre

5 - https://en.wikipedia.org/wiki/TOP500#Top_500_ranking & various resources
6 - https://wiki.whamcloud.com/display/PUB/Why+Use+Lustre
7 - https://www.vi4io.org/io500/list/18-11/10node
8 - https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/

TECHNICAL WHITEPAPER

 15

Here is a summary of the innovations we have built on top of Lustre (in words):

1.	 Numerous enterprise-focused functional capabilities like HA, Snapshots/Virtual Copies
(clone) and Data Tiering.

2.	 Lustre works in a distributed environment over WAN, and thus, operates well in a multi-
cloud environment.

3.	 Data orchestration capabilities that simplify multi-cloud data synchronization and access.

4.	 SaaS solution to deploy Lustre clusters on-demand in any cloud without need for manual
installation.

The end result is a geographically distributed, high-performance filesystem (see Figure 11
below) with key capabilities to deploy applications in multi-cloud environments.

5.2.2.2.1	 Data Mesh Filesystem Features

5.2.2.2.1.1		 POSIX-compliant
Lustre is POSIX-compliant. DMFS is based on Lustre and hence is POSIX-compliant, which
means any application that is deployed on a POSIX-compliant Filesystem (NFS, EFS, ext4,
etc.) can be deployed on Kmesh.

5.2.2.2.1.2		 Single, Loosely-Coupled Global Namespace
The multiple distributed filesystem instances are presented as a single namespace. The
exact namespace is presented based on the data synchronization policies set by the user.
For example, certain subsets of data may be visible only on certain clouds or cloud regions
according to the data orchestration policies. This way, users can control the synchronization
and visibility of their enterprise data, globally.

Figure 11: Geographically distributed, high-performance filesystem

TECHNICAL WHITEPAPER

 16

5.2.2.2.1.3		 Performance
Metadata performance

Bandwidth Performance

Spark performance

Kmesh filesystem can provide
5-10x performance improvements
over cloud-native filesystems like
EFS. The table on the left shows a
performance comparison of Spark
running on Kmesh, HDFS and EFS. AWS, 32 Executors, Kmesh - 4 x C4.8xlarge w 3x200GB gp2, Spark - 4 x

C4.8xlarge w 1x500BG st1

TECHNICAL WHITEPAPER

 17

5.2.2.2.1.4		 Availability
The filesystem is built using Kmesh Node. A Kmesh Node is a multi-node (VM or instance)
entity that optionally contains data mirroring. Apart from that, users can enable cross-AZ &
cross-region HA on the Kmesh Node to protect against AZ or region failures.

5.2.2.2.1.5		 Data Efficiency
Data efficiency within and across cloud and cloud regions becomes a huge requirement
because of economics of storage and moving data in and out of the cloud. Kmesh supports
granular at-rest and in-flight compression as well as deduplication.

5.2.2.2.1.6		 Encryption
Sensitive data needs to be safeguarded from end to end. Kmesh provides both granular at-
rest and in-flight data encryption.

5.2.2.2.1.7		 File Access Privileges
Kmesh can integrate with existing AD or LDAP IAM solutions or new cloud-based IAM
solutions like AWS IAM to create uniform file access privilege management across multiple
clouds.

5.2.2.2.1.8		 Scalability
The filesystem uses a scale-out model that scales to 100s of TBs and 100GB/s of throughput
per cloud. In addition, 100s of simultaneous data synchronizations and access can be
supported.

5.2.2.3	 Rule-based Data Orchestration Engine
The key part of the Distributed Data Service is the rule-based Data Orchestration Engine. The
data synchronization and access are controlled by the rules set by users based on use case/
app requirements.

Unlike other cloud data management solutions, Kmesh Data Flow provides a simple way to
setup the data orchestration.

5.2.2.3.1	 Kmesh Data Flow
Kmesh Data Flow provides users with a simple method for managing data orchestration
across multiple clouds. Orchestration can be performed by defining data synchronization and
cross-cloud remote data access. For example, a user can establish real-time synching of data
from on-prem to AWS East for consumption by Big Data applications and, simultaneously,
establish synching of data on AWS West to AWS central for the purpose of protecting against
the impact of a potential failure in the AWS West region.

Figure 12 show the capabilities of Data Flows. Following are common uses of a Kmesh Data
Flow:

TECHNICAL WHITEPAPER

 18

•	 Connect a data source on one cloud to a data source on a second cloud.
•	 Connect a data source on one cloud to an application (filesystem) on the same cloud or on

a different cloud.
•	 Connect an application (filesystem) on one cloud to an application (filesystem) on a different

cloud.
•	 Connect an application (filesystem) to a remote data source.

5.2.2.3.2	 Application Data Access
Data Flows make the data accessible as mountable filesystem access points (e.g. /mnt/Data
Flow1/) to any Linux-based client system in a cloud or data center. These access points can
be defined by the user in order to manage the global namespace. Applications can perform
IO operations to this file system using standard POSIX APIs. In addition, based on the Data
Flow policy and type, the data is shared with other cloud applications at multiple locations, in
real time.

5.2.2.3.3	 Flexible Data Mobility
Leveraging core Data Flow capabilities, users gain maximum flexibility in their cross-cloud
data orchestration for purposes of data access, synchronization, availability, and aggregation
(see Figure 13).

5.2.2.3.4	 Data Flow Policies

5.2.2.3.4.1		 In-Flight Compression
•	 Enabled per Data Flow
•	 At-rest compression can reduce storage requirements by more than 50 percent.9
•	 Both compression types support LZ4 and GZIP algorithms.
•	 In-flight compression uses a scale-out model to support multiple data flows.

Figure 12: Kmesh Data Flows

9 - Based on the workload profile

TECHNICAL WHITEPAPER

 19

5.2.2.3.4.2		 In-Flight Encryption

•	 Enabled per Data Flow

•	 128/192/256-bit encryption key
•	 Key Management: user-specified key management, both enterprise and public cloud-

based (e.g. AWS Key Management Service)
•	 In-flight encryption using a scale-out model to support multiple data flows.

5.2.2.3.4.3		 In-Flight Deduplication
•	 Enabled per Data Flow
•	 Duplicate blocks are detected and only metadata information is sent to the other side.

5.2.2.3.4.4		 Delete Data After Use policy
When this setting is activated, data is deleted in the destination cloud when the last app is
unmounted from the Data Flow.

5.2.2.3.5	 Kmesh filesystem to filesystem Data Synchronization
Data synchronization is a method of copying data from one cloud to another and keeping
the destination in sync with the source of any changes. The existing data is copied, and any
subsequent changes—caused by application write or data ingest updates—are synchronized.
If the application is deployed on the Kmesh filesystem, the data is synchronized in real time. In
the event that data changes occur at the external data source (NFS, EFS or S3), the changes
are synchronized as Kmesh detects the changes.

As illustrated in the Figure 14, the whole design extends Lustre’s highly parallel architecture
to metadata and data synchronization.

Figure 13: Kmesh flexible data mobility

TECHNICAL WHITEPAPER

 20

Parallel file systems split up their workload, so many processors, usually on different servers,
can operate on file system operations or IOs coming from different clients in parallel. They
can also split up large IOs from a single client and return/accept the large IOs to/from multiple
processes on different servers. In this way, parallel file systems can parallelize operations
and obtain a scale-out architecture, by adding more metadata and data stack servers. The
following is one way to implement a parallel file system architecture. In other technology
discussion documents for this patent, this described architecture is referenced as a Parallel
File System Cluster Node.

In Figure 14, we have two applications, each sending file system operations to two clients,
respectively. The clients are on different servers; and from this point, only the clients will be
discussed, because applications must pass all their file system operations through the clients.
They are performing independent IOs to a parallel file system. In the following example, there
are two metadata stack processes (MDS) existing on two compute & storage servers. There
are three data stack processes (OSS) existing on three compute & storage servers. Each of the
processes has its own unique storage infrastructure devices.

The data stripe size in this example is 3 MiB, which means a 3-MiB write, starting at address
0, will span all three data stack processes such that the first 1 MiB of 3 MiB would be written
to data stack (451); the second 1 MiB of 3 MiB would be written to data stack (452); and the
third 1 MiB of 3 MiB gets written to data stack (453).

All initial metadata open calls are sent to Metadata Stack process, and this process tells the
calling client which metadata stack process handles all subsequent metadata operations
for a specific file. Metadata stack processes are interconnected in order to solve multi-file
operations, like file rename. Network outages or process failures are not discussed.

The exact nature of synchronization and data consistency depend on the type of synchronization
used for a data flow.

Figure 14: Kmesh Filesystem to Filesystem Data Synchronization Architecture

TECHNICAL WHITEPAPER

 21

5.2.2.3.5.1		 Synchronous
A data write or change is considered successful only when it is written to the destination
successfully. This follows a semi-strict consistency approach whereby a successful update/
write on the source means that the data read on the target will reflect the same update.

This data synchronization method delivers a semi-strict consistency model. Kmesh adopted
this model to ensure producer/consumer models can be supported seamlessly. The consumer
(destination) should be able to work independently when there is a communication issue
between the source and the destination. For example, the data generated on-prem is consumed
by an analytics application in the cloud. The analytics application will continue to run, even in
the event of a communication failure with the on-prem source.

Note: the IO latency between source and destination may impact the performance of a
producer application. If such a consistency model is not required and latency is a concern,
then an async method may be selected.

5.2.2.3.5.2		 Asynchronous
The data is synced to the other side, independent of the changes and updates at the source.
This provides an eventual consistency model. This can be used for the producer/consumer
deployment model.

5.2.2.3.5.3		 Multi-Master
While the data is changed in one point for sync and async, there are scenarios in which the
same data can be changed simultaneously at multiple locations. For example, an ecommerce
application deployed across multiple geographic locations to serve specific regions needs
certain data (I.e. order & inventory data) to be updated at a global level. Multi-master data
synchronization is particularly useful in this scenario by providing a strict consistency model.

5.2.2.3.6	 Any Data Source to Any Data Source Synchronization
The Kmesh filesystem to filesystem Data Synchronization works best when an application
needs to be deployed on both sides of synchronization. In cases where this is not needed
and to synchronize from any data source to filesystem or any other data sources, Kmesh has
created the optimal synchronization solution, as illustrated in Figure 15 below.

This efficient data synchronization (Data Sync) between two regions reduces the amount
of data transferred between the data source region and the data target region. In order to
connect to and transfer data between source and target data regions with different data
semantics, data can be canonicalized into a common data interchange format. The following
is a partial list of data manipulation algorithms that improve network bandwidth to keep two
data regions synchronized. Each item will reduce data network traffic, even if implemented in
isolation.

1.	 Split objects or files into multiple smaller blocks and track differences on smaller data
regions—can now transfer small blocks that differ rather than entire files/objects.

TECHNICAL WHITEPAPER

 22

2.	 Perform deduplication on the data transmitted over the wire.

3.	 Perform compression on the data over the wire.

4.	 UDP mux/demux of network connections to increase effective throughput over a ‘lossy’
network.

5.	 Forward Error Correction (FEC) will improve network bandwidth by reducing the number
of retries in a lossy network. Reducing the number of retries will decrease synchronization
times.

Transferring data in parallel between regions will also decrease data synchronization time.
This optimization is orthogonal to data reduction techniques.

To provide security over WAN networks, the ability to encrypt/decrypt data is required but can
be optional in a LAN network environment.

This automated data synchronization system works between multiple data source regions,
possibly hybrid cloud endpoints.

•	 Control Engine will notify the system of files which have changed.

•	 Data Send Layer and Data Recv Layer are responsible for sending and receiving the data
across the endpoints.

•	 The Data Send Layer and Data Recv layer interface with respective Adapter Layer to
handle multiple Data sources like NFS, Ceph, HDFS, GCS, Lustre, AWS S3/EFS, GlusterFs,
Azure Blob and Swift. Data Send Layer and Data Recv Layer also interact with local HA
Persistence services that provide highly available persistent storage for the system.

Figure 15: Any Data Source to Kmesh Filesystem Synchronization

TECHNICAL WHITEPAPER

 23

•	 To determine how data in each file has changed, the Data Send Layer has a Block Meta
Layer which breaks files into fixed-size chunks; and using meta information about the
chunks, decides which chunks have been modified. In this manner, only modified chunks
must be transmitted to the target region.

•	 Schedule Layer is responsible for handling multiple tasks in which data is pushed in parallel
to the Destination endpoint (or Data Recv Layer). Schedule Layer will serialize tasks to
maintain correct ordering.

•	 Data move tasks run in parallel over multiplexed connections to provide efficient data
transfers over UDP protocol.

•	 Poll Layer is responsible for handling incoming data and update events to Open Desc
Metadata Layer and to the Adapter Layer for appending/modifying data at the destination
data sources.

5.2.2.3.7	 Cross-Cloud Caching for Remote Data Access (Intelligent Caching)
In many cases, users want an application deployed in the cloud to access data from a source
located in their datacenter, without making a permanent copy of the data outside the datacenter.
Kmesh Cross-Cloud Caching helps with remote data access and applies intelligent caching to
reduce IO latency.

When the Data Flow is active, the filesystem namespace is made active without waiting for
the data to be copied. The data is pulled when the application reads certain portions of it.
Kmesh caching applies intelligent pre-fetching algorithms to reduce the latency overhead.

The solution will evict the data in the cache when the allocated space is reached.

5.2.2.3.7.1		 Cross-Cloud Caching with Synchronization for Faster App Migration
One of the primary issues with app migration to cloud is the time it normally takes to copy the
application data to the cloud. When intelligent caching is combined with data synchronization
in Kmesh, an app can be started as soon as the Data Flow is active.

Figure 16: Kmesh synchronization

TECHNICAL WHITEPAPER

 24

5.2.2.3.8	 Ingest and Write to Existing File Storage and Object Storage
As part of the Data Flow, users can set up ingest data sources so that existing data can be
used in the cloud. Kmesh supports ingest from any file storage, like NFS and EFS, and object
storage like S3 and Azure Blob. Users can set up one-time & recurring ingests. Kmesh can
also write back to these external sources.

5.2.2.3.9	 Reverse Synchronization from Virtual Copy

Any time data is moved to another cloud, minimizing data movement saves money and
reduces operational times. The data from one cloud is first synchronized to another cloud.
From there, the data is snapshot or cloned. During this time, no changes have occurred to the
original data, only to the snapshot/clone. Traditionally, merging the data from the snapshot/
clone back to the original data requires a data comparison of most or all of the data on both
original data and the clone. This operation will consume a lot of time and will consume even
more if it is performed over two cloud connections.

5.2.2.3.10	 Dataflow Snapshots
Data Flows represent the data for the applications. User
can make snapshots, which are the space-efficient, read-
only copies of Data Flows.

Following are several important convenience features of
the snapshots:

•	 Copies can be mounted directly.
•	 Snapshots can be scheduled:
»» Option to schedule daily, weekly, and monthly

	 snapshots.
»» Option to change number of saved snapshots.

	 Older ones are auto-deleted once the threshold
	 number is reached. For example: Hourly (default:24)
	 Daily (Default: 7) Weekly (Default: 5) Monthly
	 (Default 12).

Figure 17: Kmesh reverse synchronization from virtual copy

Figure 18: Space-efficient Dataflow Snapshots
in Kmesh

TECHNICAL WHITEPAPER

 25

•	 The copies can be further copied to external sources (NFS, EFS, or S3).

•	 App integrated versions provide hooks to insert customer-specific scripts for quiescing of
apps running on a Data Flow or Node before making a version.

•	 The snapshots can be created within a single cloud or across multiple clouds.

5.2.2.3.11	 Dataflow Virtual Copies
A virtual copy is a point-in-time, space-efficient
copy of the Data Flow representing original
data on the source cloud. It is an independent
copy of the parent Data Flow. Virtual Copies
have the following properties:

1.	 Instantly refresh a virtual copy from the
original data on the source cloud using the
data synchronization

2.	 Changes on vIrtual Copies can be efficiently
merged back to original copy on the source
cloud using the reverse synchronization
capability.

Kmesh virtual copy technology along with
our patent-pending solution that tracks the
relationships of the copies and the changes
related to original data.

Use cases for Data Flow virtual copy

1.	 App Migration: Make on-prem data available in the cloud as read-write data so that the
application can be migrated.

2.	 DevOps in the Cloud: Deploy and streamline the DevOps process in the cloud.

Figure 19: Virtual Dataflow Copies in Kmesh

TECHNICAL WHITEPAPER

 26

6	 Manageability of Kmesh

In addition to managing the Kmesh service using the Kmesh Portal, the service can also be
managed using REST and via the Kubernetes Dynamic Volume plugin.

6.1	 REST API
Kmesh can be provisioned and managed using REST APIs. These are the APIs the portal uses
to manage the service as well.

6.2	 Kubernetes Integration
Customers can deploy Kubernetes PODs on Kmesh with Kmesh dynamic provisioner.
Following capabilities are provided by Kmesh dynamic provisioner.

•	 Deploy different K8s PODs or instances of PODs on different storage types, storage
location. cloud regions or even clouds using policies

•	 A single POD can be deployed across hybrid cloud.
•	 Deploy PODs uniformly load balanced across all the available storage infrastructure

The following diagram illustrates how different PODs are assigned to different Data Flows
from different policies.

Figure 20: Dynamic provisioning of K8s PODs with Kmesh

TECHNICAL WHITEPAPER

 27

7	 Kmesh Onboarding

Kmesh orchestrator provides fully automated installation of Kmesh instances on private
and public clouds. There are several prerequisite configurations and steps users take prior
to Kmesh installation. In addition, users configure credentials so that Kmesh can access the
infrastructure.

7.1	 Private cloud
•	 Kmesh requires access to vCenter to create the VMs and install Kmesh instances.

Alternatively, users can create the required instances and configure the IP addresses
for the VMs.

•	 Network connectivity for Kmesh service to access the Kmesh instance.

7.2	 Public cloud
•	 Kmesh is installed in a VPC on the public cloud and requires shared credentials to

create the VPC.

•	 Kmesh may also require network connectivity to on-prem via VPN or DirectConnect,
if the use case involves on-prem.

Kmesh, Inc.
4655 Old Ironsides Drive #460
Santa Clara, CA 95054

info@kmesh.io

Kmesh India Pvt Ltd.
Suite 412, HQ10, 4th Floor,
Plot No.10, Bristol IT Park,
Thiru Vi Ka Industrial Estate, Guindy,
Chennai, Tamil Nadu 600032

Visit us on the web at
https://kmesh.io/partners/,
or email us today at info@kmesh.io.

mailto:info%40kmesh.io?subject=
https://kmesh.io/partners/
mailto:info%40kmesh.io?subject=

